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Abstract—In analyzing fuzzy-valued imprecise data statisti-
cally, scale measures/estimates play an important role. Scale mea-
sures/estimates of datasets are often considered, among others, to
descriptively summarize them, to compare the dispersion or the
spread of different datasets, to standardize data, to state rules
for detecting outliers, to formulate regression objective functions,
and so on.

To be robust, an estimate of scale should have a finite
breakdown point close to 50% (i.e., around half data should be
replaced by ‘outliers’ to make the estimate break down, either
in the sense of exploding to infinity or imploding to zero). In
this respect, the Median Distance Deviation about the median
(MDD) for fuzzy datasets has already been introduced and its
robust behaviour has been proved.

In contrast to the real-valued case, computation of the MDD
for fuzzy data is much more complex and cannot be exactly
but approximately performed in general. These computational
inconveniencies are mainly associated with the fact that, in
general, the ‘median of the fuzzy dataset’ cannot be exactly
calculated, but simply approximated through some levels, and it
does not preserve the shape of the fuzzy data. The same happens
with the distances between data and the approximate median.
Consequently, the use of location-free scale measures would be
especially appropriate-to-use in this fuzzy-valued environment.

This paper aims to extend some robust global scale estimates,
and to prove that the extension remains robust. Furthermore, it
will be shown that these estimates can be easily and exactly com-
puted for fuzzy trapezoidal data, the assumption of considering
trapezoidal data not implying an important loss of generality in
the setting of scale estimation.

Index Terms—finite sample breakdown point, fuzzy number-
valued data, distance between fuzzy data, random fuzzy numbers,
robust scale estimate, scale estimates of fuzzy data

I. INTRODUCTION

IN everyday life, there exist many data related to opinions,
quality ratings, valuations, perceptions, etc. which cannot

be appropriately expressed by using real numbers. Actually,
most of these data are intrinsically imprecise and they can
often be properly described and modeled by means of fuzzy
numbers. The space of fuzzy numbers means a very rich scale,
which is doubly (vertically and horizontally) continuous.
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On the other hand, random fuzzy numbers (RFNs for short,
see Puri and Ralescu [1] for the seminal reference about)
constitute a well-stated model for the random mechanism
generating fuzzy number-valued data within a probabilistic
setting. They integrate both randomness and fuzziness, so the
random generation of experimental data and the fuzzy-valued
imprecise nature of these data are assured.

In condensing the relevant information about the distribution
of an RFN, one usually pays attention to two key aspects:
the measurement of the central tendency or location and the
representative measurement of its dispersion or its spread.

To summarize the location of an RFN, some measures have
already been suggested. The so called Aumann-type mean (see
Puri and Ralescu [1]) is an extended mean value that preserves
all the main valuable properties of the mean of a random
variable and it is coherent with the usual arithmetic with
fuzzy numbers. Nevertheless, it also preserves an extremely
sensitive behaviour to changes and the presence of atypical
values (outliers). In the last years, extensions of robust location
measures have been introduced and examined, namely, the 1-
norm and the wabl/ldev/rdev medians (see Sinova et al. [2],
[3], [4]), and the location M-estimates (see Sinova et al. [5]).

To summarize the representative measurement of the disper-
sion or the spread for fuzzy datasets, the best known measure
is the Fréchet-type variance (see Körner [6] and Lubiano et
al. [7]), and the associated standard deviation. As for the
Aumann-type mean, the Fréchet-type variance preserves all the
main valuable properties of the variance of a random variable,
but it also preserves an extremely sensitive behaviour to data
changes or the presence of outliers. Recently, a robust scale
measure has been introduced (see De la Rosa de Sáa et al. [8]):
the Median Distance Deviation (MDD for short) about the
fuzzy median. Its robust behaviour has been shown in terms
of its finite sample breakdown point and a kind of real-valued
extension of the sensitivity curves. However, in contrast to the
real-valued case, the computation of the MDD involves some
complications. This is generally due to the fact that:

• the exact computation of the median is rather unfeasible;
it requires the levelwise computation of some real-valued
medians, so that in practice the median should be neces-
sarily approximated through a finite number of its level
sets;

• as a consequence, the exact computation of the distance
between each fuzzy data and the median is rather un-
feasible; actually, unlike what happens with M-estimates
of location for fuzzy data, the median does not usually
preserve the shape of fuzzy data and distances involved
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in the MDD require levelwise computations and approx-
imations.

To avoid the last drawbacks, this paper aims to present
some estimates of scale for fuzzy data that are location-
free and, apart from preserving some of the most important
features of the MDD in [8], they also achieve the maximum
finite sample breakdown point and have bounded real-valued
extended sensitivity curves. Moreover, they can usually be
exactly computed and have a simple and explicit formula
(which as for the real-valued case entails a reduction in the
computation time consumption).

This paper is organised so that in Section II the arithmetic
with fuzzy numbers and the concept of RFN are recalled. Two
metrics between fuzzy numbers to be used in this article, as
well as two location measures (the Aumann-type mean, see
Puri and Ralescu [1], and the 1-norm median, see Sinova et
al. [2]) and two location-based scale measures (the Fréchet-
type variance, see Körner [6] and Lubiano et al. [7], and
the MDD about the 1-norm median, see De la Rosa de Sáa
et al. [8]) are also recalled. Section III presents the three
location-free estimates of scale proposed as alternatives to
the MDD, illustrates them by means of a real-life example,
and analyzes some of their properties as scale measures. The
robust behavior of all these estimates is formally proved in
Section IV by means of the exact and general computation of
their finite sample breakdown point. Finally, on the basis of
realistically inspired simulation developments, in Section V an
approximation of the sample breakdown point is given and the
real-valued extended sensitivity curves are also approximated
for simulated ‘symmetric’ and ‘asymmetric’ distributions. The
paper ends with a few comments on future directions.

II. PRELIMINARY TOOLS

As we have already commented, imprecise data can often be
properly expressed and modeled by means of fuzzy numbers.
In addition to the imprecision associated with interval values,
fuzzy values allow us to capture gradualness (i.e., they can dis-
tinguish different degrees of compatibility of the real values in
each interval with the imprecise valuation). In this section, the
concept of fuzzy number and the usual fuzzy arithmetic based
on Zadeh’s extension principle [9] are recalled. In Section II-B
we can find two metrics between fuzzy numbers which will be
used in this paper. A formal model for the random mechanism
generating fuzzy number-valued data along with some location
measures and location-based scale measures for fuzzy datasets
are recalled in Section II-C.

A. The space of fuzzy numbers

Fuzzy numbers (in the literature also referred to as fuzzy
intervals) are formalized as follows:

Definition II.1. A (bounded) fuzzy number is a mapping Ũ :
R → [0, 1] such that for all α ∈ [0, 1] the α-level set defined
as

Ũα =

{
{x ∈ R : Ũ(x) ≥ α} if α ∈ (0, 1]

cl{x ∈ R : Ũ(x) > 0} if α = 0

with ‘cl’ denoting the topological closure, is a nonempty
compact interval. Ũ1 is referred to as the core of Ũ and
{x ∈ R : Ũ(x) > 0} is called the support of Ũ .

For each x ∈ R, the value Ũ(x) can be interpreted as the
‘degree of compatibility of x with the property or valuation
associated with Ũ ’.

A useful example of fuzzy numbers are the trapezoidal ones,
Tra(a, b, c, d) with a ≤ b ≤ c ≤ d, where

(
Tra(a, b, c, d)

)
α

=
[α · b + (1 − α) · a, α · c + (1 − α) · d]. Trapezoidal fuzzy
numbers are very frequently used in practice because of their
ease of drawing, interpreting and computing.

The space of (bounded) fuzzy numbers will be denoted by
F∗
c (R). Real numbers and (nonempty) compact intervals can

be viewed as special trapezoidal fuzzy numbers with a = b =
c = d and a = b, c = d, respectively.

The statistical analysis of fuzzy data demands the use
of a suitable arithmetic to handle them. Namely, the two
elementary operations required in performing statistics with
fuzzy data are the sum between fuzzy numbers and the
product of fuzzy numbers by scalars. The most usual and
natural fuzzy arithmetic extends the usual arithmetic with real
numbers and intervals, that is, the arithmetic based on Zadeh’s
extension principle [9]. Therefore, the sum and the product
with fuzzy data are formalized as the levelwise extensions of
the usual operations between intervals. More concretely, given
Ũ , Ṽ ∈ F∗

c (R) and γ ∈ R,

Definition II.2. The sum of Ũ and Ṽ is defined as the fuzzy
number Ũ + Ṽ ∈ F∗

c (R) such that for each α ∈ [0, 1]

(Ũ + Ṽ )α =
[

inf Ũα + inf Ṽα, sup Ũα + sup Ṽα
]
,

that is, the Minkowski sum of Ũα and Ṽα.

Definition II.3. The product of Ũ by the scalar γ is defined as
the fuzzy number γ · Ũ ∈ F∗

c (R) such that for each α ∈ [0, 1]

(γ · Ũ)α =


[
γ · inf Ũα, γ · sup Ũα

]
if γ ≥ 0

[
γ · sup Ũα, γ · inf Ũα

]
otherwise.

When the space of fuzzy numbers F∗
c (R) is endowed with

the two preceding operations, it does not have a linear but a
semilinear (actually a conical) structure, in contrast to what
happens in the real-valued case. Consequently, there is no
definition for the difference between fuzzy numbers which
is simultaneously well-defined and preserves the fact that
(Ũ − Ṽ ) + Ṽ = Ũ whatever Ũ , Ṽ ∈ F∗

c (R) may be.
Nevertheless, we can make use of appropriate metrics between
fuzzy numbers, and this will allow us to consider the scale
estimates extension in this paper.

B. Some metrics between fuzzy numbers

Throughout this paper, we will consider two extensions of
the Euclidean distance in R.

The metric which is to be mostly employed in this paper is
the L1-type 1-norm distance (see Diamond and Kloeden [10])
which is given by
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Definition II.4. (Diamond and Kloeden [10]) Given Ũ , Ṽ ∈
F∗
c (R), the 1-norm distance between Ũ and Ṽ is given by

ρ1(Ũ , Ṽ )

=
1

2

∫
(0,1]

(∣∣∣inf Ũα − inf Ṽα

∣∣∣+
∣∣∣sup Ũα − sup Ṽα

∣∣∣) dα.
The computation of the ρ1-distance between two fuzzy

numbers can usually be exactly performed, although both the
computation and the resulting expression can frequently be
rather cumbersome, but in case of trapezoidal fuzzy numbers
as it will be later shown.

The L2-type 2-norm distance (see Diamond and Kloe-
den [10]) is the most commonly used to formalize the standard
deviation, and it is defined as follows:

Definition II.5. (Diamond and Kloeden [10]) Given Ũ , Ṽ ∈
F∗
c (R), the 2-norm distance between Ũ and Ṽ is given by

ρ2(Ũ , Ṽ )

=

√
1

2

∫
(0,1]

([
inf Ũα−inf Ṽα

]2
+
[
sup Ũα−sup Ṽα

]2)
dα.

The ρ2-distance between two of the most commonly consid-
ered types of fuzzy numbers can usually be exactly computed,
and both the computation and the resulting expression are not
very complex (see, for instance, Lubiano et al. [11]).

C. Random fuzzy numbers

When fuzzy data associated with random experiments are
considered and a statistical analysis of these data is going to
be carried out, a well-supported mathematical model for the
random mechanisms generating these data is needed. Random
fuzzy numbers have been shown to be a sound model for this
purpose.

Consider a random experiment which is mathematically
modeled by means of a probability space (Ω,A, P ).

Definition II.6. (Puri and Ralescu [1]) A random fuzzy num-
ber (for short RFN) associated with (Ω,A, P ) is a mapping
X : Ω → F∗

c (R) such that for all α ∈ [0, 1] the α-level
mapping Xα : Ω → P(R) (power set of the space of real
numbers) given by Xα(ω) =

(
X (ω)

)
α

is a compact random
interval, that is, the real-valued mappings inf Xα and supXα
are random variables.

Remark II.1. Random fuzzy numbers have been introduced in
a more general dimension by Puri and Ralescu [1], who coined
them as fuzzy random variables. These random elements
have also been referred to in the literature as random fuzzy
sets (see, for instance, [12], [13], [14]) and random upper
semicontinuous functions (see, for instance, [15], [16], [17]).

Remark II.2. It is known that a mapping X : Ω → F∗
c (R)

is an RFN if and only if it is a Borel-measurable mapping
w.r.t. the Borel σ-field generated on F∗

c (R) by the topology
induced by several different metrics, like those in Definitions
II.4 and II.5. This Borel-measurability allows us to refer to the
distribution induced by an RFN, the stochastic independence

of RFNs, and so on, without needing to state these notions
expressly.

In summarizing the (induced) distribution of an RFN, the
best known central tendency measure is the Aumann-type
mean (see Puri and Ralescu [1]), which fulfills many valuable
properties and is supported by Strong Laws of Large Numbers.

Consider the RFN X and a sample of individuals
(ω1, . . . , ωn), and let x̃n = (x̃1, . . . , x̃n) be the associated
sample of fuzzy data, that is, x̃i = X (ωi) for i = 1, . . . , n.

Definition II.7. (Puri and Ralescu [1]) The (sample) Aumann-
type mean of the fuzzy dataset x̃n = (x̃1, . . . , x̃n) is defined
as the fuzzy number x̃n such that for all α ∈ [0, 1](

x̃n

)
α

=

[
1

n

n∑
i=1

inf(x̃i)α,
1

n

n∑
i=1

sup(x̃i)α

]
.

With the aim of avoiding the strong influence of atypical
values or changes on the Aumann-type mean of an RFN,
the following robust location measure was introduced and
examined a few years ago.

Definition II.8. (Sinova et al. [2]) The (sample) 1-norm
median of the fuzzy dataset x̃n = (x̃1, . . . , x̃n) is defined as

the fuzzy number ̂̃Me(x̃n) such that for all α ∈ [0, 1](̂̃
Me(x̃n)

)
α

=
[
Me{inf(x̃1)α, . . . , inf(x̃n)α},

Me{sup(x̃1)α, . . . , sup(x̃n)α}
]
,

with Me{·} denoting the sample median of the corresponding
real-valued dataset, and by following the most usual conven-
tion of choosing the mid-point of the interval of medians in
case it is not unique.

The 1-norm median of an RFN preserves all the most
remarkable properties of the median of a random variable,
including its high robustness w.r.t. either changes in data or
the presence of outliers.

The two preceding location estimates for fuzzy data are
both equivariant by scale and location. Moreover, whereas the
sample Aumann-type mean is the fuzzy number minimizing
the mean squared ρ2-distance between sample fuzzy data and a
fuzzy number, the sample 1-norm median is (one of) the fuzzy
number(s) minimizing the mean ρ1-distance between sample
fuzzy data and a fuzzy number.

In addition to the central tendency, the distribution of
an RFN is often summarized by means of scale measures.
Following the ideas by Bickel and Lehmann in the real-valued
case for dispersion and spread measures [19], [20], by a scale
measure/estimate we mean a nonnegative measure/estimate
which is (nonnegative) scale equivariant, and (fuzzy) location
and sign invariant (often referred to as affine equivariant), that
is, a measure τ(X ) such that

τ(c · X ) = |c| · τ(X ) and τ(X + Ũ) = τ(X )

whatever c ∈ R and Ũ ∈ F∗
c (R) may be. Furthermore, it

is commonly assumed that in case the distribution of X is
degenerate at a fuzzy number, then τ(X ) = 0.



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. , NO. , 4

Körner [6] and Lubiano et al. [7] have introduced the
Fréchet-type variance, and the associated standard deviation
can be trivially derived.

Definition II.9. (De la Rosa de Sáa et al. [13], based on
Körner [6] and Lubiano et al. [7]) The (sample) Fréchet-type
Standard Deviation estimator, ρ̂2-SDn, associates with the
sample of fuzzy data x̃n = (x̃1, . . . , x̃n) the real number given
by

ρ̂2-SD(x̃n) =

√√√√ 1

n

n∑
i=1

[
ρ2(x̃i, x̃n)

]2
.

The standard deviation defined above preserves all the most
remarkable properties of that of a random variable, including
its high sensitivity w.r.t. either changes in data or the presence
of outliers. Aiming to reduce such a sensitivity as much as
possible, De la Rosa de Sáa et al. [8] have introduced the
following scale measure.

Definition II.10. (De la Rosa de Sáa et al. [8]) The (sample)
Median Distance Deviation about the 1-norm median esti-
mator, ̂ρ1-MDDn, associates with the sample of fuzzy data
x̃n = (x̃1, . . . , x̃n) the real number given by

̂ρ1-MDD(x̃n)

= Me

{
ρ1

(
x̃1,

̂̃
Me(x̃n)

)
, . . . , ρ1

(
x̃n,

̂̃
Me(x̃n)

)}
,

where in case the real-valued Me is not unique the usual
convention of choosing the mid-point of the interval of medians
will be employed.

The Median Distance Deviation about the 1-norm median
preserves all the essential properties of the MDD for random
variables. De la Rosa de Sáa et al. [13] have proved such
properties along with the fact that, whereas the number of
sample data which should be replaced by ‘outliers’ to make
the estimate break down (either in the sense of exploding
to infinity or imploding to zero) equals 1 for SD, it equals
bn/2c for MDD (with b·c denoting the floor function), which
corresponds to the highest possible value for the finite sample
breakdown point.

III. SOME LOCATION-FREE SCALE ESTIMATES AS
ALTERNATIVES TO THE MDD FOR FUZZY DATA

Since fuzzy numbers represent imprecise values, in general
one cannot rank them according to their ‘magnitude’. Total
orderings can be stated in F∗

c (R) (see, for instance, [21],
[22] for suggested orderings), but none can be universally
accepted, whence the idea of right and left deviations cannot
make rigourous general sense in the fuzzy numbers setting.
Nevertheless, as for the case of real-valued data, one can
assert that the robust MDD takes a kind of ‘symmetric’ view
of dispersion because of involving distances between data
and a central value of the dataset. Therefore, the MDD is
not a natural scale measure in dealing with ‘asymmetric’
distributions.

Furthermore, in the case of fuzzy datasets the computation
of the MDD involves some added concerns, namely: the

one associated with the computation of the fuzzy-valued 1-
norm median, which should be approximated through a finite
number of levels and does not usually preserve data shape,
and, consequently, the one associated with the computation of
distances between fuzzy data and the 1-norm median, which
should also be approximated on the basis of the distances for
a finite number of levels.

The aim of this paper is to introduce some scale estimates
for fuzzy data with maximum finite sample breakdown point,
that is, bn/2c/n (the one for MDD), properly behaving with
asymmetric distributions and involving lower computational
cost and complexity. For this purpose, the extension of
three scale estimates for real-valued datasets suggested by
Rousseeuw and Croux [23], [24] is now to be considered.

A. Extended location-free scale estimates for fuzzy data

Let X be an RFN and let x̃n = (x̃1, . . . , x̃n) be a sample
of observations from it.

Definition III.1. The (sample) scale estimator ρ̂1-Sn asso-
ciates with x̃n the real number given by

ρ̂1-S(x̃n) = Mei
{

Mej {ρ1(x̃i, x̃j)}
}
,

where Me is a low median, that is, the ln-th order statistic with
ln := b(n +1)/2c and Me is a high median, that is, is the hn-
th order statistic with hn := d(n+ 1)/2e = bn/2c+ 1, where
b·c and d·e denote the floor and ceiling functions, respectively.

Therefore, for each i we compute the high median of
{ρ1(x̃i, x̃j) : j = 1, . . . , n}. This leads to n real numbers,
the low median of which gives the estimate ρ̂1-Sn.

Definition III.2. The (sample) scale estimator ρ̂1-Qn asso-
ciates with x̃n the real number given by

ρ̂1-Q(x̃n) = {ρ1(x̃i, x̃j) : i < j}(mn),

where mn :=
(
hn

2

)
.

That is, it corresponds to the mn-th order statistic of the(
n
2

)
distances between each two different fuzzy data.

Definition III.3. The (sample) scale estimator ρ̂1-Tn asso-
ciates with x̃n the real number given by

ρ̂1-T(x̃n) =
1

hn

hn∑
r=1

{
Mej {ρ1(x̃i, x̃j)} ; i = 1, . . . , n

}
(r)
.

For each i the estimate calculates the high median of
{ρ1(x̃i, x̃j) : j = 1, . . . , n}, leading to n medians. Then, it
computes the average of the hn first ordered medians.

Note that the above defined scale estimates have an explicit
formula. Moreover, whereas ̂ρ1-MDDn and ρ̂2-SDn involve
the previous computation of a location estimate (the sample
1-norm median and the sample Aumann type mean, respec-
tively), those in Definitions III.1, III.2 and III.3 do not require
any reference to the center of the distribution since they only
take into account distances between observations.

To illustrate the preceding scale estimates we now compute
them in a real-life example.
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B. Illustrative real-life example
Consider the sample of 23 trapezoidal fuzzy numbers col-

lected in Table I and displayed on the left of Figure 1.

TABLE I
SAMPLE OF 23 TRAPEZOIDAL FUZZY NUMBERS WITH ONE (BOLD)

OUTLIER, AND (ai, bi, ci, di) ≡ Tra(ai, bi, ci, di) = x̃i

(ai, bi, ci, di) (ai, bi, ci, di) (ai, bi, ci, di)

(8.4,9,10,10) (8,8.5,8.5,9) (8,8.5,9.2,9.2)
(3,3,3.45,4) (6,6,6.6,7.7) (7,8,9,9)

(8.6,10,10,10) (8.1,8.2,8.6,9) (9,10,10,10)
(10,10,10,10) (9.6,9.8,10,10) (8,10,10,10)

(8.9,9.4,10,10) (9.2,9.8,10,10) (6,7,9,10)
(10,10,10,10) (5.2,5.4,5.65,6) (8.6,9.15,9.75,10)

(8.7,9.4,10,10) (8,9,10,10) (5.1,6,6.75,7.3)
(9,10,10,10) (10,10,10,10)

Fig. 1. Sample of trapezoidal fuzzy numbers with (on the left) and without
(on the right) outlier x̃2

They correspond to the fuzzy responses provided by 23
Grade 4 students (nine to ten years old) to the question in
the well-known TIMSS-PIRLS 2011 Student’s Questionnaire
“How much do you agree with this statement about learning
mathematics: M.2. My teacher is easy to understand?”. In the
original version of the Questionnaire, items are designed so
that responses are to be given by considering a 4-point Likert
scale (labels of the potential responses being DISAGREE A LOT,
DISAGREE A LITTLE, AGREE A LITTLE, and AGREE A LOT).
Nevertheless, several items have been adapted to produce more
expressive and informative responses and statistical conclu-
sions by considering a fuzzy rating scale in Hesketh et al.’s
sense [25] (see Figure 2 for the adapted version associated
with Item M.2 for the paper-and-pencil form). The adapted
questionnaire was conducted in 2014 on Grade 4 students of
Colegio San Ignacio, in Oviedo, and the dataset in Table I has
been supplied by the students filling out the paper-and-pencil
form (some others have filled out a computerized form).

The bold datum in the table, x̃2 = Tra(3, 3, 3.45, 4), clearly
stands out from the rest of the values and can be viewed as
an ‘outlier’.

Table II gathers the values of the scale estimates recalled
in Section II and those defined in this section for the whole
dataset (with the outlier) and also for the reduced dataset in
which the outlier has been removed. We can observe the high
sensitivity of ρ̂2-SD(x̃n) to the presence of this outlier in
contrast to the more robust behavior of ̂ρ1-MDD(x̃n) and the
highly robust behavior of ρ̂1-S(x̃n), ρ̂1-Q(x̃n) and ρ̂1-T(x̃n),
since the last three values do not change when the outlier is
removed from the dataset.

Fig. 2. Example of an item in the paper-and-pencil form of the adapted
questionnaire

TABLE II
THE EFFECT OF REMOVING THE OUTLIER IN SOME SCALE ESTIMATES

Scale measure Dataset WITH outlier Dataset WITHOUT outlier

ρ̂2-SD(x̃n) 1.69 1.29
̂ρ1-MDD(x̃n) 0.60 0.48
ρ̂1-S(x̃n) 0.63 0.63
ρ̂1-Q(x̃n) 0.38 0.38
ρ̂1-T(x̃n) 0.49 0.49

C. The alternative estimates are scale estimates

It can be proved that the estimates introduced in this section
are in fact scale estimates as above indicated. Thus,

Proposition III.1. ρ̂1-Sn, ρ̂1-Qn and ρ̂1-Tn are nonnegative
and affine equivariant estimators, and in case the observations
in the sample are equal, that is, x̃n = (x̃, (n times). . . , x̃), then
ρ̂1-S(x̃n) = 0, ρ̂1-Q(x̃n) = 0 and ρ̂1-T(x̃n) = 0.

Remark III.1. As for the real-valued case, and for the
MDD estimator, either ρ̂1-S(x̃n), ρ̂1-Q(x̃n) or ρ̂1-T(x̃n)
vanishing does not generally entail that all observations
in the sample x̃n coincide. To illustrate this assertion
consider, for instance, the fuzzy-valued sample x̃5 =
(Tri(0, 1, 2),Tri(1, 2, 3),Tri(1, 2, 3), Tri(1, 2, 3),Tri(2, 3, 4))
with Tri(a, b, c) = Tra(a, b, b, c). It is straightforward to check
that the values of the scale estimates in Definitions III.1,
III.2 and III.3 equal zero. Consequently, the vanishing of
scale estimates in Definitions III.1, III.2 and III.3 does not
necessarily ensure the lack of variability. This is due to the
fact that these estimates should be viewed as representative
measures of the spread of sample fuzzy data (as understood by
Bickel and Lehmann [20]), instead of measures of variability.

D. Remarks on the use of trapezoidal fuzzy data and real-life
example-based remark on the influence of the shape of fuzzy
data

As it has already been commented, trapezoidal fuzzy num-
bers are easy to draw, interpret and compute. In the last respect,
all the computations involved in the location-free estimates in
this section can be straightforwardly carried out for trapezoidal
fuzzy numbers.

In this way, the ρ1- and the ρ2-distances between
two trapezoidal fuzzy numbers Tra(a1, b1, c1, d1) and
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Tra(a2, b2, c2, d2) can be exactly obtained and they equal

ρ1
(
Tra(a1, b1, c1, d1),Tra(a2, b2, c2, d2)

)
= Gρ1(a1 − a2, b1 − b2) +Gρ1(c1 − c2, d1 − d2),

where

Gρ1(x, y) =


x|x| − y|y|
4(x− y)

if x 6= y

|y|
2

otherwise.

,

ρ2
(
Tra(a1, b1, c1, d1),Tra(a2, b2, c2, d2)

)
=
√
Gρ2(a1 − a2, b1 − b2) +Gρ2(c1 − c2, d1 − d2),

where
Gρ2(x, y) =

x2 + y2 + xy

6
.

It should be also pointed out that in case all fuzzy data in
the sample are trapezoidal, x̃i = Tra(ai, bi, ci, di), then:

• the sample mean is also trapezoidal, more concretely,

x̃n = Tra

(
1

n

n∑
i=1

ai,
1

n

n∑
i=1

bi,
1

n

n∑
i=1

ci,
1

n

n∑
i=1

di

)
,

what substantially eases the exact computation of
ρ̂2-SDn; the same happens for most of LR-fuzzy data
(see [18]);

• however, contrary to what happens with the sample mean,
in case all fuzzy data in the sample are trapezoidal one
cannot generally anticipate the shape of the sample 1-
norm median, which should be approximated through a
large finite number of levels and does not usually share
the trapezoidal shape. In consequence, the computation
of ̂ρ1-MDDn becomes quite cumbersome and it is not
exact; the same happens for most of LR-fuzzy data.

The last remark concerning the computation of ̂ρ1-MDDn

strongly supports the convenience of introducing location-free
scale estimates.

On the other hand, it should be pointed out that the
assumption of fuzzy data having trapezoidal shape is not very
restrictive in practice. This assertion has been inferentially
proven for Fréchet’s variance (see De la Rosa de Sáa et
al. [26]) for the case study in Section III-B, and conclusions
can be corroborated by means of different simulation studies
(p-values of the test about the equality of variances are shown
to be very high, so there is no significant difference between
variances for different shapes).

And this can be also descriptively shown for the location-
free scale estimates which have been introduced in this paper.
More concretely, assume the fuzzy data from the illustrative
example in Section III-B are joined to the fuzzy data for
the remaining 45 students who completed the computerized
form of the same questionnaire. Secondly, the linear ‘arms’ of
their trapezoidal shape are replaced by other ones which are
instances of the so-called LU -fuzzy numbers (see, for instance,
Stefanini et al. [27]), so that the core and the support of the
fuzzy data are preserved and they can represent close concepts
or valuations (see Figure 3).

Fig. 3. Six types of fuzzy numbers sharing core [20, 25] and support (10, 40)
and differing in shape. On the left, trapezoidal (top) and Π-curve (bottom),
along with four different LU fuzzy numbers on the middle and the right

Then, the resulting datasets in http://bellman.ciencias.
uniovi.es/SMIRE/FuzzyRatingScaleQuestionnaire-SanIgnacio.
html lead to the outputs in Table III. Notice that values
in each row scarcely differ. Similar conclusions would be
drawn for other items and simulated examples, as shown in
Section V-B.

TABLE III
SCALE ESTIMATES VALUES FOR THE RESPONSES TO ITEM M.2 IN

SECTION III-B, DEPENDING ON THE CONSIDERED SHAPE

estimate \ shape Tra Π LU1A LU1B LU2A LU2B

ρ̂2-SDn 2.3419 2.3380 2.3012 2.3785 2.3357 2.3722

̂ρ1-MDDn 1.7374 1.7371 1.6887 1.7951 1.7332 1.7870

ρ̂1-Sn 1.5000 1.5000 1.3991 1.5600 1.4867 1.5390

ρ̂1-Qn 0.8125 0.8063 0.8007 0.8250 0.8090 0.8269

ρ̂1-Tn 1.1786 1.1785 1.1314 1.2317 1.1744 1.2253

Remarks concerning the computation of ̂ρ1-MDDn along
with the small influence of the shape of fuzzy data on the scale
estimates and the ease to design and fill out questionnaires al-
lowing fuzzy responses, strongly reinforce the convenience of
using trapezoidal fuzzy data and location-free scale estimates.

IV. FORMAL ANALYSIS OF THE ROBUSTNESS OF THE
LOCATION-FREE SCALE ESTIMATES THROUGH THEIR

FINITE SAMPLE BREAKDOWN POINTS

The situation in the example in Section III-B illustrates how
strongly the presence of an atypical fuzzy datum influences the
value of ρ̂2-SD(x̃n), whereas such an influence is less relevant
for ̂ρ1-MDDn and not relevant for ρ̂1-S(x̃n), ρ̂1-Q(x̃n) or
ρ̂1-T(x̃n).

In order to generally analyze whether or not this assertion
is true, a popular and powerful tool is the breakdown point.
Donoho and Huber [28] stated that “the notion of breakdown
point was coined, formally defined, and very briefly discussed
by Frank Hampel, at that time a student of Erich Lehman, in
his PhD in 1968” [29]. Although originally it was presented
for location estimates, the concept has also been generalized
to scale estimates.

A simple and intuitive definition of the breakdown point
restricted to finite samples, the so-called finite sample break-
down point (fsbp for short), was introduced by Donoho [30]
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and Donoho and Huber [28]. For scale estimates the fsbp
is defined as the minimum proportion of sample data which
should be perturbed in order to let the estimate achieve
either an arbitrarily large value or the value zero. The higher
the breakdown point of an estimate, the more robust it is.
Therefore, two situations are to be studied: the one consisting
of contaminating the sample by means of outliers, which can
make the estimate overestimate the true scale up to infinity
(explosion), and the one consisting of contaminating the sam-
ple by means of inliers, which may result in underestimation
of the true scale to zero (implosion). Notice that in dealing
with location estimates only the explosion case makes sense.

Next, the replacement version of the finite sample break-
down point for scale estimates (see Donoho and Huber [28])
is adapted to deal with fuzzy data.

Definition IV.1. For any sample of observations x̃n from an
RFN X , the finite sample breakdown point of a scale estimate
τ̂(x̃n) is defined by

fsbp(τ̂(x̃n)) = min
{

fsbp+(τ̂(x̃n)), fsbp−(τ̂(x̃n))
}

where
fsbp+(τ̂(x̃n)) = min

{k
n

; sup
ỹn,k

τ̂(ỹn,k) =∞
}

and
fsbp−(τ̂(x̃n)) = min

{k
n

; inf
ỹn,k

τ̂(ỹn,k) = 0
}

with ỹn,k obtained by replacing any k observations of x̃n
by arbitrary fuzzy values. The quantities fsbp+ and fsbp−

are called the explosion breakdown point and the implosion
breakdown point, respectively.

The following theorems prove that if the considered sample
of fuzzy observations x̃n does not contain two coinciding
observations, then its fsbp equals 1

n

⌊
n
2

⌋
for the three scale

estimates introduced in Section III, which is the highest
possible fsbp for a scale estimate, as it has already been
said. Therefore, these estimators inherit the value of the fsbp
from the real-valued case (see, for instance, Rousseeuw and
Croux [24]).

Theorem IV.1. For any sample of observations x̃n from an
RFN X in which there are not two identical observations, we
have that

fsbp+(ρ̂1-S(x̃n))=
1

n

⌊
n+ 1

2

⌋
, fsbp−(ρ̂1-S(x̃n))=

1

n

⌊n
2

⌋
.

Therefore, the finite sample breakdown point of the scale
estimate ρ̂1-S(x̃n) is given by

fsbp(ρ̂1-S(x̃n)) =
1

n

⌊n
2

⌋
,

which is the highest possible fsbp of a scale estimate.

Theorem IV.2. For any sample of observations x̃n from an
RFN X in which there are not two identical observations, we
have that

fsbp+(ρ̂1-Q(x̃n))=
1

n

⌊
n+ 1

2

⌋
, fsbp−(ρ̂1-Q(x̃n))=

1

n

⌊n
2

⌋
.

Therefore, the finite sample breakdown point of the scale
estimate ρ̂1-Q(x̃n) is given by

fsbp(ρ̂1-Q(x̃n)) =
1

n

⌊n
2

⌋
,

which is the highest possible fsbp of a scale estimate.

Theorem IV.3. For any sample of observations x̃n from an
RFN X in which there are not two identical observations, we
have that

fsbp+(ρ̂1-T(x̃n))=
1

n

⌊
n+ 1

2

⌋
, fsbp−(ρ̂1-T(x̃n))=

1

n

⌊n
2

⌋
.

Therefore, the finite sample breakdown point of the scale
estimate ρ̂1-T(x̃n) is given by

fsbp(ρ̂1-T(x̃n)) =
1

n

⌊n
2

⌋
,

which is the highest possible fsbp of a scale estimate.

Proofs of the preceding results can be found in the supple-
mentary material.

V. REALISTIC SIMULATION-BASED ANALYSES OF THE
ROBUSTNESS OF THE GLOBAL SCALE ESTIMATES

A crucial thought at this stage is that there are not any
suitable realistic models for the distribution of an RFN yet;
this makes the simulation process a rather novel endeavor.

In the setting of fuzzy data, the notion of outlier for the
real-valued case still makes sense: they are observations that
are ‘separated’ from the majority of data because, among
others, they have either a completely different ‘location’ or a
completely different ‘imprecision’ (i.e., with a different scale
on the core and the support, that is, ‘wider’ or ‘narrower’ than
most of the data) or both.

Section V-A describes how to generate (non-contaminated)
fuzzy data.

A. Simulating non-contaminated fuzzy data

The generation procedure of the (non-contaminated) sample
is inspired by several real-life fuzzy datasets (see, for instance,
De la Rosa de Sáa et al. [13], Sinova et al. [5]) involving
the use of the so-called fuzzy rating scale (see Hesketh et
al. [25]) and by applying goodness-of-fit techniques to model
the distribution of some key real values of the core and support
of the fuzzy data.

More concretely, to generate the non-contaminated fuzzy
dataset from a random LU -valued fuzzy number X =
LU(inf X0, inf X1, supX1, supX0) taking on fuzzy values
characterized by 4-tuples, we follow the process in De la Rosa
de Sáa et al. [13] and Lubiano et al. [11], [31].

To ease simulation and modelling, X is to be characterized
by means of four real-valued random variables, X1, X2, X3

and X4, where
X1 = midX1 = (inf X1 + supX1)/2,

X2 = sprX1 = (supX1 − inf X1)/2,

X3 = lsprX0 = inf X1 − inf X0,

X4 = usprX0 = supX0 − supX1,

that is,

X = LU(X1−X2−X3, X1−X2, X1 +X2, X1 +X2 +X4).



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. , NO. , 8

Fuzzy data have been generated so that
− 100 ·ω1% of the data have been obtained by first consid-

ering a simulation from a simple random sample of size
4 from a beta β(p, q) distribution, the ordered 4-tuple,
(a, b, c, d), and finally computing the values of the xi.
The values from the beta distribution are re-scaled and
translated to an interval [0, 100].

− 100 · ω2% of the data have been obtained considering a
simulation of four random variables Xi = 100 · Yi as
follows:

Y1 ∼ β(p, q),
Y2 ∼ Uniform

[
0,min{1/10, Y1, 1− Y1}

]
,

Y3 ∼ Uniform
[
0,min{1/5, Y1 − Y2}

]
,

Y4 ∼ Uniform
[
0,min{1/5, 1− Y1 − Y2}

]
.

− 100 · ω3% of the data have been obtained considering a
simulation of four random variables Xi = 100 · Yi as
follows:

Y1 ∼ β(p, q),

Y2 ∼

 Exp(200) if Y1 ∈ [0.25, 0.75]
Exp(100 + 4Y1) if Y1 < 0.25
Exp(500− 4Y1) otherwise

Y3 ∼
{
γ(4, 100) if Y1 − Y2 ≥ 0.25
γ(4, 100 + 4Y1) otherwise

Y4 ∼
{
γ(4, 100) if Y1 + Y2 ≥ 0.25
γ(4, 500− 4Y1) otherwise.

On the basis of simulated fuzzy data one corroborates in
Section V-B what has been previously highlighted in Sec-
tion III-D by means of a real-life example.

B. Simulation-based analysis of the influence of the shape of
fuzzy data

As it has been commented in Section III-D, computations
required to obtain the scales estimates ρ̂1-Sn, ρ̂1-Qn and
ρ̂1-Tn are substantially easier if involved fuzzy data are
trapezoidal. Moreover, assuming that available fuzzy data are
trapezoidal does not entail a significant loss of generality in
statistical summarization. This assertion has been corroborated
in previous studies in connection with the Aumann-type mean
and other central tendency measures (see Lubiano et al. [11],
[32]) and the Fréchet-type variance (see De la Rosa de Sáa
et al. [26]).

In this section, on the basis of the results from the simulation
of fuzzy data which have been gathered in Table IV, one can
immediately confirm that the shape of fuzzy data representing
close concepts/valuations does not substantially affect the
values of the scale estimates. In this respect, Table IV shows

- the values of the scale estimates ρ̂2-SDn, ̂ρ1-MDDn,
ρ̂1-Sn, ρ̂1-Qn and ρ̂1-Tn for a sample of n LU fuzzy
data (with LU ∈ {Tra,Π, LU1A, LU2A, LU1B , LU2B},
n = 20 and n = 100) simulated by following the
procedure described in Section V-A, where the considered
weights are ω1 = 0.8, ω2 = 0.1 and ω3 = 0.1, and

- the mean squared errors over 1000 samples of size n.
Next section describes how to generate fuzzy outliers.

TABLE IV
SCALE ESTIMATES VALUES IN A SPECIFIC SAMPLE AND MEAN SQUARED

ERROR OVER 1000 SAMPLES OF n SIMULATED FUZZY DATA WITH
DIFFERENT SHAPES

EXAMPLE OF THE ESTIMATE FOR A SAMPLE
(sample size n = 20)

estimate \ shape Tra Π LU1A LU1B LU2A LU2B

ρ̂2-SDn 0.6471 0.6359 0.6392 0.6875 0.6457 0.6896

̂ρ1-MDDn 0.4390 0.4165 0.4282 0.4624 0.4376 0.4598

ρ̂1-Sn 0.6786 0.6625 0.6944 0.7044 0.6981 0.7298

ρ̂1-Qn 0.5345 0.5059 0.5059 0.5286 0.5168 0.5419

ρ̂1-Tn 0.6081 0.5893 0.6263 0.6192 0.6252 0.6315

MSE (MEAN SQUARED ERROR) of the estimator over 1000 samples)
(sample size n = 20)

estimate \ shape Tra Π LU1A LU1B LU2A LU2B

ρ̂2-SDn 0.0084 0.0086 0.0085 0.0090 0.0085 0.0089

̂ρ1-MDDn 0.0077 0.0080 0.0082 0.0088 0.0080 0.0088

ρ̂1-Sn 0.0099 0.0103 0.0104 0.0113 0.0099 0.0111

ρ̂1-Qn 0.0035 0.0037 0.0037 0.0040 0.0036 0.0039

ρ̂1-Tn 0.0076 0.0080 0.0083 0.0087 0.0078 0.0086

EXAMPLE OF THE ESTIMATE FOR A SAMPLE
(sample size n = 100)

estimate \ shape Tra Π LU1A LU1B LU2A LU2B

ρ̂2-SDn 0.7366 0.7250 0.7515 0.7388 0.7364 0.7448

̂ρ1-MDDn 0.5111 0.4899 0.5039 0.4893 0.4907 0.4792

ρ̂1-Sn 0.6572 0.6385 0.6621 0.6796 0.6377 0.6815

ρ̂1-Qn 0.4652 0.4503 0.4673 0.4692 0.4640 0.4712

ρ̂1-Tn 0.5652 0.5492 0.5780 0.5840 0.5605 0.5882

MSE (MEAN SQUARED ERROR) of the estimator over 1000 samples)
(sample size n = 100)

estimate \ shape Tra Π LU1A LU1B LU2A LU2B

ρ̂2-SDn 0.0015 0.0016 0.0016 0.0016 0.0016 0.0016

̂ρ1-MDDn 0.0015 0.0016 0.0016 0.0018 0.0016 0.0018

ρ̂1-Sn 0.0016 0.0016 0.0017 0.0018 0.0016 0.0018

ρ̂1-Qn 0.0004 0.0005 0.0004 0.0005 0.0004 0.0005

ρ̂1-Tn 0.0013 0.0014 0.0013 0.0015 0.0013 0.0015

C. Simulating fuzzy outliers

Three different types of outliers are to be considered for all
the simulations conducted in this work. We explain now how
to generate outliers which will be assumed to be trapezoidal.

First, for each type of outlier, the four-tuple (x1, x2, x3, x4)
is generated from the distribution of the random vector
(X1, X2, X3, X4) in the non-contaminated sample. Then, we
construct the outlier ỹ = Tra(y1−y2−y3, y1−y2, y1+y2, y1+
y2 + y4) in the following way:

• Outlier of translation: y1 = x1 + r1, y2 = x2, y3 = x3,
y4 = x4.

• Outlier of scale on the core and support: y1 = x1,
y2 = |r2| · x2, y3 = |r2| · x3, y4 = |r2| · x4.

• Outlier of both translation and scale: y1 = x1 + r1,
y2 = |r2| · x2, y3 = |r2| · x3, y4 = |r2| · x4.
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As an example of the process, Figure 4 illustrates on the top
the ‘symmetric case’, generating the non-contaminated sample
(in grey) of size 10 from a β(100, 100), and on the bottom the
‘asymmetric case’, generating the non-contaminated sample
(in grey) of size 10 from a β(1, 100). The chosen weights in
both cases have been ω1 = 0.8, ω2 = 0.1 and ω3 = 0.1.

In both cases, two outliers (in black) have been added to
the sample. In the symmetric case, for the two outliers of
translation we have chosen r1 = 30 and r1 = −30, for the
two outliers of scale r2 = 5 and r2 = 10, and for the two
outliers of both translation and scale r1 = 30 and r2 = 5 for
the first outlier and r1 = −30 and r2 = 10 for the second one.
In the asymmetric case, for the two outliers of translation we
have chosen r1 = 30 and r1 = 60, for the two outliers of
scale r2 = 40 and r2 = 80 and for the two outliers of both
translation and scale r1 = 30 and r2 = 40 for the first outlier,
and r1 = 60 and r2 = 80 for the second one.

0 20 40 60 80 100

0

1

Original sample

0 20 40 60 80 100

0

1

Outliers of translation

0 20 40 60 80 100

0

1

Outliers of scale on the core and support

0 20 40 60 80 100

0

1

Outliers of both translation and scale

0 20 40 60 80 100

0

1

Original sample

0 20 40 60 80 100

0

1

Outliers of translation

0 20 40 60 80 100

0

1

Outliers of scale on the core and support

0 20 40 60 80 100

0

1

Outliers of both translation and scale

Fig. 4. On the top, from left to right, the non-contaminated sample (in
grey) from a symmetric distribution, the contaminated sample by 2 outliers
of translation (in black), the contaminated sample by 2 outliers of scale
(in black) on core and support and the contaminated sample by 2 outliers
(in black) of both location and scale. On the bottom, from left to right,
the non-contaminated sample (in grey) from an asymmetric distribution, the
contaminated sample by 2 outliers of translation (in black), the contaminated
sample by 2 outliers of scale (in black) on core and support and the
contaminated sample by 2 outliers (in black) of both location and scale

D. Simulation-based breakdown point approach

It should be noticed that the breakdown point approach does
not make proper sense for this realistic simulation procedure,
since the supports of the generated fuzzy numbers are assumed
to be included within the bounded interval [0, 100]. In such
a situation, none scale estimator can explode to infinity.
Therefore, instead of the finite sample breakdown point, one
should better refer to a ‘pseudo-breakdown point’.

In the simulations we have considered in this section, the
sample size is n = 21, and the chosen weights are ω1 =
16/21, ω2 = 3/21 and ω3 = 2/21.

For the explosion pseudo-breakdown point, an outlier of
translation ỹi has been constructed so that
− for the symmetric case, the non-contaminated sample

has been generated on the basis of a beta distribution
β(1000, 1000) and the fuzzy numbers have been con-
strained to belong to the interval [47.5, 52.5]. Then, we
have chosen

r1i =

{
8 + i+1

2 · 4 if i is odd
−(8 + i

2 · 4) if i is even.

− for the asymmetric case, the non-contaminated sample
has been generated on the basis of a beta distribution
β(1, 100) and the fuzzy numbers have been constrained
to belong to the interval [0, 5]. Then, we have chosen
r1i = 40 + i · 5.

The general scheme of the simulation of outliers has been
structured as follows:

Step 1. A sample x̃21 of 21 trapezoidal fuzzy numbers has
been simulated from the considered distribution by using the
weights ω1 = 16/21, ω2 = 3/21 and ω3 = 2/21.

Step 2. Contaminated samples ỹ21,k have been obtained
by replacing k observations of the original sample x̃21 by k
outliers ỹi, with k ∈ {1, . . . , 11} and i ∈ {1, . . . , k}. Overall,
k contaminated samples, one for each k value, have been
considered.

Step 3. The values of the different location-free scale
measures and SD and MDD have been calculated for the
original sample without contamination, x̃21, and for each of
the k contaminated samples ỹ21,k.

In case any of the 4 real values characterizing an outlier falls
outside the reference interval [0, 100], then it is automatically
replaced by 0 if it is negative, or by 100 if it is over 100.

The simulation-based conclusions for the explosion in this
study are presented in the two first rows in Table V, which
display the values of different estimates when outliers are
introduced in the sample by replacement.

For the implosion pseudo-breakdown point, the non-
contaminated sample has been generated on the basis of a beta
distribution β(100, 100) regarding the symmetric distribution,
and on the basis of a beta distribution β(1, 100) regarding the
asymmetric distribution.

To study the breakdown point for implosion, we have con-
sidered the inliers being all of them equal to one observation
chosen randomly from the non-contaminated sample.

The general scheme of the simulation has been structured
as follows:

Step 1. A sample x̃21 of 21 trapezoidal fuzzy numbers has
been simulated from the considered distribution by using the
weights ω1 = 16/21, ω2 = 3/21 and ω3 = 2/21.

Step 2. Contaminated samples ỹ21,k have been obtained by
replacing k observations of the original sample x̃21 by k inliers
ỹ, with k ∈ {1, . . . , 20}. In total, k contaminated samples, one
for each k value.

Step 3. The values of the different location-free scale
measures and SD and MDD have been calculated for the
original sample without contamination, x̃21, and for each of
k contaminated samples ỹ21,k.

The simulation-based conclusions for the implosion in this
study are presented in the two last rows in Table V, which
display the values of different estimates when inliers are
introduced in the sample by replacement.

Regarding explosion we can conclude that the minimum
number of perturbed observations by outliers that makes the
estimator increase noticeably, independently of the considered
distribution, has been

• 1 for estimate ρ̂2-SD(x̃21),
• 11 for estimates ̂ρ1-MDD(x̃21), ρ̂1-S(x̃21), ρ̂1-Q(x̃21)

and ρ̂1-T(x̃21).
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TABLE V
EXPLOSION PSEUDO-BREAKDOWN POINT: VALUES OF THE SCALE ESTIMATES FOR A SAMPLE OF SIZE 21 FROM A SYMMETRIC (1ST ROW)

AND ASYMMETRIC (2ND ROW) DISTRIBUTION WITH k (ABSCISE) OBSERVATIONS REPLACED BY OUTLIERS OF TRANSLATION, k VARYING FROM 0 TO 11.
IMPLOSION PSEUDO-BREAKDOWN POINT: VALUES OF THE SCALE ESTIMATES FOR A SAMPLE OF SIZE 21 FROM A SYMMETRIC (3RD ROW)

AND ASYMMETRIC (4TH ROW) DISTRIBUTION WITH k (ABSCISE) OBSERVATIONS REPLACED BY INLIERS, k VARYING FROM 0 TO 20

PSEUDO-BP DISTRIBUTION ρ̂2-SDn
̂ρ1-MDDn ρ̂1-Sn ρ̂1-Qn ρ̂1-Tn

explosion symmetric

explosion asymmetric

implosion symmetric

implosion asymmetric

Regarding implosion we can conclude that the minimum
number of perturbed observations by inliers that makes the
estimator implode to zero, independently of the distribution
case considered, has been

• 20 for estimate ρ̂2-SD(x̃21),
• 10 for estimates ̂ρ1-MDD(x̃21), ρ̂1-S(x̃21), ρ̂1-Q(x̃21)

and ρ̂1-T(x̃21).
Therefore, the empirical value for the explosion and implo-

sion ‘pseudo-breakdown point’ coincides with the value of the
theoretical fsbp when it makes proper sense.

Results for other simulation procedures, the other two
types of outliers, other sample sizes and other scale es-
timates can be found in http://bellman.ciencias.uniovi.es/
SMIRE/Archivos/SimScest.pdf. Similar conclusions could be
drawn for other choices of weights ω1, ω2 and ω3.

E. Simulation-based extended sensitivity curve approach

Another important and useful tool to measure the robust-
ness of an estimator dealing with real-valued data is the
sensitivity curve, which represents the sample version of the
influence functions (see, for instance, Maronna et al. [33] and
Rossello [34]).

The finite sample breakdown point (or its ‘pseudo’ adapted
version) tells us how much the estimate changes when a
percentage of the data is contaminated by outliers or inliers. In

contrast to the finite sample breakdown point, the sensitivity
curve describes how the estimator reacts to a single outlier
in the data, the outlier being characterized in terms of a real-
valued deviation from an arbitrary datum.

It should be emphasized that in the setting of fuzzy data
it would be very complex to extend and graphically display
the sensitivity curve. Thus, the above mentioned real-valued
deviation would have to be replaced by a fuzzy-valued one,
which would be difficult to handle and interpret.

The following analysis concerns a real-valued extended
sensitivity curve approach, which corroborates from a dif-
ferent perspective the robustness of the new estimates in this
paper. This extended curve is defined so that if X is an RFN,
x̃n = (x̃1, . . . , x̃n) is a sample of observations from X and
τ̂ is a scale estimate, the real-valued extended sensitivity
curve of the estimate τ̂(x̃n) is the function associating with
each s ∈ R (or in a bounded interval, in case the support
of the RFN values is constrained to be included in such an
interval, where we would refer to pseudo-sensitivity curve) the
difference

SC(s) = τ̂(x̃[s]
n )− τ̂(x̃n)

where the sample x̃
[s]
n is obtained by replacing a fixed obser-

vation of x̃n, which has been previously chosen at random,
by the outlier ỹs.
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TABLE VI
PSEUDO-SENSITIVITY CURVES OF THE SCALE ESTIMATES AS FUNCTIONS OF s FOR A SAMPLE OF SIZE 100

AND OUTLIERS OF TRANSLATION (1ST/4TH ROWS), SCALE ON CORE AND SUPPORT (2ND/5TH ROWS),
AND BOTH (3RD/6TH ROWS) FOR SYMMETRIC/ASYMMETRIC DISTRIBUTIONS

OUTLIERS DISTRIBUTION ρ̂2-SDn
̂ρ1-MDDn ρ̂1-Sn ρ̂1-Qn ρ̂1-Tn

translation symmetric

scale core-support symmetric

transl.+scale core-supp. symmetric

translation asymmetric

scale core-support asymmetric

transl.+scale core-supp. asymmetric

In the analysis in this section, the non-contaminated sample
has been simulated in accordance with the above described
procedure. We have considered the sample size to be n = 100,
with the weights ω1 = 0.8, ω2 = 0.1 and ω3 = 0.1. The outlier
ỹs has been constructed as follows:

• For the symmetric case, the non-contaminated sample has
been generated from a beta β(100, 100), and

− Outlier of translation: r1s = s, with s varying from
−20 to 20 with a step equal to 0.1.

− Outlier of scale on the core and support: r2s = s,
with s varying from 0 to 20 with a step equal to 0.1.

− Outlier of both translation and scale: r1s = r2s = s,
with s varying from −20 to 20 with a step equal
to 0.1.

• For the asymmetric case, the non-contaminated sample
has been generated from a beta β(1, 100).
− Outlier of translation: r1s = s, with s varying from

0 to 20 with a step equal to 0.1.
− Outlier of scale on the core and support: r2s = s,

with s varying from 0 to 20 with a step equal to 0.1.
− Outlier of both translation and scale: r1s = r2s = s,

with s varying from 0 to 20 with a step equal to 0.1.
For each type of outlier, the general scheme of the construc-

tion of the pseudo-sensitivity curves has been as follows:
Step 1. A sample x̃100 of 100 trapezoidal fuzzy numbers

has been simulated from the considered distribution.
Step 2. One observation from the original sample x̃100 has

been chosen randomly and replaced by the outlier ỹs.
Step 3. For each s, the value of the sensitivity curve has

been calculated for each estimator of scale.
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The pseudo-sensitivity curves have been graphically dis-
played for each estimator in Table VI.

Irrespective of the type of outlier we are considering, the
pseudo-sensitivity curves

• show an increasing behaviour w.r.t. |s| for ρ̂2-SD(x̃n);
• show an upper bounded and very similar behaviour w.r.t.
|s| for ̂ρ1-MDD(x̃n), ρ̂1-S(x̃n), ρ̂1-Q(x̃n) and ρ̂1-T(x̃n).

As for the fsbp, one can also find in the link
http://bellman.ciencias.uniovi.es/SMIRE/Archivos/SimScest.pdf
the results for other simulation procedures, the other two
types of outliers, other sample sizes and other scale estimates.
Similar conclusions could be drawn for other choices of
weights ω1, ω2 and ω3. In all cases, we can see that the
sensitivity curves for the ρ̂1-Tn are smoother than for the
rest of robust scale estimates, and the sensitivity curves for
non-robust estimates show an increasing behaviour w.r.t. |s|.

VI. CONCLUDING REMARKS

The definition of location-free robust scale estimates for
fuzzy data aims to substantially ease the computation of
location-based robust scale estimates for fuzzy data, like the
Median Distance Deviation, which has recently been intro-
duced (see [8]). Robust location measures for fuzzy data do
not often preserve the shape of sample data, and to involve
them in measuring scale frequently becomes a cumbersome
and not fully exact task. To avoid such drawbacks, three
location-free scale estimates are introduced and examined
in this paper. They extend the so-called explicit scale esti-
mates for numerical data proposed by Rousseeuw and Croux
(see [23], [24]). Fortunately, the extension preserves the key
properties of the estimates for numerical data and inherits
their robustness (extended proofs for this are included in the
supplementary material). In addition to the theoretical proofs
and the illustrative simulations in connection with the finite
sample breakdown point for the alternate new scale estimates,
the paper shows for the first time simulation-based sensitivity
studies for the location-based and location-free scale estimates
w.r.t. outliers of translation and outliers of scale on core and
support for fuzzy datasets.

The introduced estimates fulfill the following properties:
• Their finite sample breakdown point equals 1

n

⌊
n
2

⌋
(like

MDD), which is the highest fsbp a scale estimate can
reach.

• They have a simple and explicit formula.
• They are location-free estimates of scale, in contrast to

the estimates ̂ρ1-MDDn (or ρ̂2-SDn) which are based on
location measures (the 1-norm median and Aumann-type
mean, respectively).

• Their sensitivity curves are upper bounded (like MDD).
Furthermore, whereas the computation of the MDD for

fuzzy data should be generally performed approximately and
requires important computational time cost and complexity,
the computation of the new estimates is much simpler for
the usual types of fuzzy data and very easy-to-make for
trapezoidal ones. Actually, their computation for trapezoidal
fuzzy data is scarcely more time consuming and complex than

the computation with real-valued data (see the R package [35]
implementing such computations).

In summary, the scale estimates for fuzzy data in this paper
share the main statistical properties of the MDD and show
a similar behavior, but in the setting of fuzzy data location-
freedom entails an important added value in estimating scale
since it considerably eases computations.

It should be remarked that since there are not realistic mod-
els for the normality of RFNs, one cannot formally analyze
the Gaussian efficiency of the new estimates in contrast to
that of the MDD. If one makes use of the normality by Puri
and Ralescu [36], the conclusions will be certainly similar to
those for the real-valued case, but such a normal model is
quite restrictive and not realistic enough.

Finally, among the future directions to be considered aiming
to complete and extend the study carried out in this paper, one
can mention:

• an extension and comparative analysis of M-estimates of
scale;

• the definition and comparative analysis of the median
distance deviation about the M-estimator of location (see
Sinova et al. [5]);

• an analysis of the influence of the property of symmetry
of an RFN (see Sinova et al. [37]) in some properties of
the scale estimates.
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Marı́a Ángeles Gil is full professor of Statistics
and O.R. at the University of Oviedo (Spain) since
1992. Her research was initially focused on the
measurement and statistical developments concern-
ing the amount of information and inequality of
random variables. Since 1983, her research interests
have been mostly related to the statistical analysis
of imprecise data (mainly set-valued and fuzzy set-
valued). On this topic she heads the research group
SMIRE (http://bellman.ciencias.uniovi.es) and she is
a member of the Core SMPS Group steering the

biennial conferences on Soft Methods in Probability and Statistics. She
was co-editor-in-chief of the journal TEST (2005-2008) and associate/area
editor for Computational Statistics and Data Analysis, International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, and TEST and
she is currently Associate Editor for Fuzzy Sets and Systems, International
Transactions in Operational Research, and Information Sciences. She has been
awarded with the Silver Medal of the Principality of Asturias in 2014 and is
an IFSA fellow since 2015.



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. , NO. , 14

Peter Filzmoser is full professor at the statistics
department of the Vienna University of Technology.
His main research interests include robust statistics,
methods for compositional data analysis, statistical
computing with R, and many more. He is author
of the books: ”Applied Compositional Data Analy-
sis. With Worked Examples in R (Springer 2018),
”Introduction to Multivariate Statistical Analysis in
Chemometrics” (CRC Press, 2009), and ”Statistical
Data Analysis Explained. Applied Environmental
statistics with R (Wiley, 2008). Currently, he is head

of the Research Unit in Computational Statistics, Institute of Statistics and
Mathematical Methods in Economics, Vienna University of Technology.


